Determining synaptic parameters using high-frequency activation.

نویسندگان

  • Monica S Thanawala
  • Wade G Regehr
چکیده

BACKGROUND The specific properties of a synapse determine how neuronal activity evokes neurotransmitter release. Evaluating changes in synaptic properties during sustained activity is essential to understanding how genetic manipulations and neuromodulators regulate neurotransmitter release. Analyses of postsynaptic responses to high-frequency stimulation have provided estimates of the size of the readily-releasable pool (RRP) of vesicles (N0) and the probability of vesicular release (p) at multiple synapses. NEW METHOD Here, we introduce a model-based approach at the calyx of Held synapse in which depletion and the rate of replenishment (R) determine the number of available vesicles, and facilitation leads to a use-dependent increase in p when initial p is low. RESULTS When p is high and R is low, we find excellent agreement between estimates based on all three methods and the model. However, when p is low or when significant replenishment occurs between stimuli, estimates of different methods diverge, and model estimates are between the extreme estimates provided by the other approaches. COMPARISON WITH OTHER METHODS We compare our model-based approach to three other approaches that rely on different simplifying assumptions. Our findings suggest that our model provides a better estimate of N0 and p than previously-established methods, likely due to inaccurate assumptions about replenishment. More generally, our findings suggest that approaches commonly used to estimate N0 and p at other synapses are often applied under experimental conditions that yield inaccurate estimates. CONCLUSIONS Careful application of appropriate methods can greatly improve estimates of synaptic parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of Extracellular Signal-Regulated Kinase during Long-term Potentation in area CA1 of the Rat Hippocampus in vivo

The extracellular signal-regulated kinase (ERK) cascade can transduce cell-surface signals to the nucleus in post-synaptic neurons during hippocampus-dependent learning and hippocampus-dependent synaptic plasticity, yet, whether the cascade can convey information about stimulus frequency or synaptic modification direction to the nucleus during plasticity events has not been addressed. The objec...

متن کامل

Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations

Gamma oscillations are thought to be critical for a number of behavioral functions, they occur in many regions of the brain and through a variety of mechanisms. Fast repetitive bursting (FRB) neurons in layer 2 of the cortex are able to drive gamma oscillations over long periods of time. Even though the oscillation is driven by FRB neurons, strong feedback within the rest of the cortex must mod...

متن کامل

Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity.

Spike-timing-dependent synaptic plasticity (STDP) by definition requires the temporal association of pre- and postsynaptic action potentials (APs). Yet, in cortical pyramidal neurons pairing unitary EPSPs with single APs at low frequencies is ineffective at generating plasticity. Using recordings from synaptically coupled layer 5 pyramidal neurons, we show here that high-frequency (200 Hz) post...

متن کامل

Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex

Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...

متن کامل

Depressing synapse as a detector of frequency change.

In this article we discuss the short-term synaptic depression using a mathematical model. We derive the model of synaptic depression caused by the depletion of synaptic vesicles for the case of infinitely short stimulation time and show that the analytical formulas for the postsynaptic potential (PSP) and kinetic functions take simple closed form. A solution in this form allows an analysis of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 264  شماره 

صفحات  -

تاریخ انتشار 2016